
NASA/WVU Software IV & V Facility

Software Research Laboratory

Technical Report Series

NASA-IVV-97-011

WVU-IVV-97-011

WVU-CS-TR-97-014

A Loss Tolerant Rate Controller for Reliable Multicast

By Todd Montgomery

National Aeronautics and Space Administration

West Virginia University

NASA-IVV-97-011

NASA IV&V Facility, Fairmont, West Virginia

A Loss Tolerant Rate Controller for Reliable Multicast

Todd Montgomery

August 20, 1997

This technical report is a product of the National Aeronautics and Space Administration

(NASA) Software Program, an agency wide program to promote continual improvement

of software engineering within NASA. The goals and strategies of this program are

documented in the NASA software strategic plan, July 13, 1995.

Additional information is available from the NASA Software IV&V Facility on the

World Wide Web site http://www.ivv.nasa.govl

This research was funded under cooperative Agreement #NCC 2-979 at the NASA/WVU

Software Research Laboratory.

WORKING DRAFT

A Loss Tolerant Rate Controller for Reliable Multicast

Todd Montgomery

West Virginia University and GlobalCast Communications, Inc.

tmont@ {cs.wvu.edu, gcast.com}

Technical Report: NASA-IVV-97-011

September 8, 1997

Abstract
This paper describes the design, specification, and

performance of a Loss Tolerant Rate Controller (LTRC)
for use in controlling reliable multicast senders. The

purpose of this rate controller is not to adapt to

congestion (or loss) on a per loss report basis (such as

per received negative acknowledgment), but instead to
use loss report information and perceived state to

decide more prudent courses of action for both the

short and long term. The goal of this controller is to be

responsive to congestion, but not overly reactive to

spurious independent loss. Performance of the

controller is verified through simulation results.

1. Introduction

Reliable multicast protocols face numerous problems
when deployed in a large-scale internetwork. One of the

principle problems is congestion control. The current

Internet must reply primarily on end-to-end congestion

control at the protocol layer. Congestion aware router

components are becoming more widely deployed, but
deployment in a large infrastructure like the Internet is a

slow process. For reliable multicast to be accepted and

embraced, it must address congestion control.

Congestion control can be implemented two basic ways
for reliable multicast. Either the sender controls the rate

for the whole group, or the receiver controls the rate at

which it receives the data, usually by using multiple
multicast groups. The first way, to control the sender, is

essentially the technique TCP uses. Loss information,

through timeouts, fast retransmits, or selective

acknowledgments, causes the sender to slow its sending
rate. The primary drawback to scaling this technique up
to reliable multicast is that all of the receivers are

effected by this rate change. One can argue that this is

undesirable given that some receivers should not pay
the price for congestion on the path to other receivers.

For a loss tolerant data type, such as Audio/Video

(A/V), this argument has much merit. However, for
bulk-transfer, where the goal is to get 100% of a data

object from the sender to a group of receivers, allowing

the receivers to receive at different rates brings in a

potential semantic problem. At the least, the faster
receivers might have to wait for the slower receivers to

receive the whole object before the sender can proceed
to the next data object. A more complicated scheme

may involve allowing different receivers to receive
different objects at different rates, while thus

disallowing receiver consistency to be taken into

account in a scaleable way. For bulk transfer, this may

or may not be a serious problem depending on the

consistency needs of the application. Further
complicating the problem is that certain data types do

not lend themselves well to being split among varying

groups so that receiving the pieces of the data object at
different speeds is possible or desirable I.

Separate from the issue of the congestion control
method, but none-the-less a factor in it, is the method(s)

of reliable delivery. As a generalization, the primary
mechanisms of achieving reliable delivery can be

broken down into two approaches, statistical and

decisional. A statistical method involves intentionally

sending redundant data that allows receivers to

reconstruct the original message if a piece of the data is
lost. Statistically, this improves the odds of being able

to receive the original data. Forward Error Correction

(FEC) is the primary example of this. A decisional
method involves the receiver deciding how to receive a

lost portion of data. This could be through requesting a
retransmission, or by resorting to a third party to fill in

the loss. In the presence of no loss, the use of

redundancy causes the transmission to be less efficient.
In fact, redundancy is only efficient if the redundancy
level is close to the amount of loss. If the loss level is

above the redundancy level, then the method is
ineffective because the original data is not "decodable"

from the amount of data received. In comparison, a

decisional method is going to have an efficiency level

that depends on the amount of the original data

"retransmitted". A graph of this relationship is
presented below. An optimization of these two

i The problem here stems primarily from the close
relationship between ordering, consistency, and efficient use
of data layout to achieve that relationship.

© Copyright GlobalCast Communications, Inc. 1997, All rights reserved.

WORKING DRAFT

techniques is possible. [NBT97] presents an integrated
technique that is highly efficient.

100

80 F-........... L.................._- i..............

_, 6070 T _ i

__01m-_...--÷.._......................................
20_. _ i
10
o! i i _

0 20 40 60 80 100
Percent Retransmitted

Figure 1: Decisional Efficiency

The point of this discussion is to stress the need for a

request-response system for reliable delivery. Any
congestion control scheme should take this into account.

However, this has a hidden problem. Imagine the simple

setup presented below with a single sender and two

receivers. We will refer to this as the local recovery
rate problem.

S Point of loss Rq

S Sender

Rp Rp Repair Site
Rq Request Site

Figure 2: Local Recovery Problem

Here have a topology where three sites are distributed.

We make a simplifying assumption that repair

suppression (i.e. multiple repairs are not sent out for a
single requests) is used. The case is that we have a

sender (S), and two receivers, Rq and Rp. Rq

experiences a loss on the link shown in the figure. Rq

may or may not be just a single member of a multicast

subtree that sends the request. The repair suppression
(by SRM [FJLMZ95] or the use of DRs in RMTP

[LP96]) dictates that Rp is the one to send the repair.

The sender keeps sending at its own rate. It should be
easy to see that the loss point (or congestion point) will

not reduce its rate, in fact, it is increased by the repair
being sent. This is a pathology if the link is persistently

congested because the flow through the link increases

with the loss experienced by Rq as more repairs are sent
which create more loss. This continues until total

congestion collapse occurs or other traffic through the

link subsides. In order to account for this problem, the

sender must reduce its rate because the repairing site,

Rp, can not control the rate through the congested link
that the sender is injecting. This is a very convincing

argument for sender rate control if local recovery is
allowed to occur. In fact, this argument should hold

even if repairs (retransmissions) are allowed only from

the sender and the repairs are not rate controlled along
with the new data being injected.

Very few things in the world are mutually exclusive. It
is possible, and desirable, to use both sender and

receiver approaches for congestion control. A sender

rate control component could optimize intra-group

transmission, while a receiver component could
optimize receivers into groups based on loss and

available rate. A naive first approach for this would be

to have receivers switch to auxiliary groups if loss

levels reach certain thresholds. Such a system would try
to keep the loss (and consequently the average rate) of

the main group within certain limits. Thus the need and

utility of a sender rate control component for reliable

multicast should be clearly obvious.

Section 2 presents the primary requirements for a

reliable multicast rate controller as well as design goals

that should be taken into account. Section 3 presents a
rate controller designed to meet those requirements.

Section 4 presents simulation results of that rate

controller. Then Section 5 presents some conclusions
and future work with the rate controller.

2. Requirements and Goals
To fully understand the requirements for a sender rate

controller for reliable multicast, we need to look at the

operating environment of such a system. [YKT96] and
[M97] indicate that most loss in the Internet Multicast

Backbone (Mbone) is highly independent (vs. shared),

i.e. spatially uncorrelated. The observation in [M97]

that no relationship between sender rate and loss rate

exists is difficult to except in light of two additional
facts. The system under observation is highly chaotic

and the consecutive loss observed was never really

explained. In addition, the variable rate used was not
reactive to network conditions. It was reactive to data

source properties (such as lighting changes). This
combined with no consideration of other traffic could

easily lead to very complex relationships that are

unobservable without extremely large data sets.

The rate controller should be able to adapt to loss levels

that are high, but are the result of a large amount of

independent loss. In this case, if the loss is only
spurious, then the controller should not drastically

change its rate in the long term (as TCP would). In this

WORKING DRAFT

way, we can think of the rate controller being somewhat
loss tolerant. The controller must also be able to deal

with perhaps a large number of receivers, a large

number of congested links within the distribution tree,

and a large, varying amount of delay within the
distribution tree. In addition, the controller must deal

with the local recovery problem outlined above.

Our main goal with the controller is to develop a rate
controller that works in the presence of some amount of

background independent loss without reducing its rate
drastically. In the presence of persistent loss (typically
on one or more bottleneck links) the controller should

set its rate to whatever is most responsive to other TCP

and rate controlled flows. The controller assumption of
the multicast infrastructure is that most receivers will

experience some amount of loss "noise" that is mostly

independent, but not persistent. For some, or perhaps
all, receivers, some link, or set of links, will be the

bottleneck were loss is going to be persistent. LTRC
should determine the rate at which this loss versus the

effective throughput is optimized and the impact to

other competing flows is minimized. The controller
must assume that other flows are responsive. If not, then

the controller may enforce a minimum rate determined

by the application characteristics, such as the rate of
data generation, that the controller will send no slower

than. These assumptions, with the exception of a

minimum rate and multiple receivers, are essentially the

same ones used by TCPs congestion control strategy.

The controller should reduce the risk of accidentally

doing harm. Receiver controlled approaches have a

problem as identified in [MJV96]. They have to assume
that other receivers will follow the same actions to loss

they experience. Shared links that become congested

can only become uncongested if all the receivers using
it remove themselves from the group. Failure to do so

quickly is problematic in that congestion stays around.
The use of IGMPvl, suspended processes (if control is

in the application), and unreliable prunes makes this
change unlikely to propagate quickly. In addition,

receiver-based approaches allow denial of service

attacks to take place because it only takes a single
receiver to subscribe to all groups and ignore loss to

have receivers sharing the same link(s) be effected. A
sender rate controller must therefore protect itself from
one or a few errant receivers. The easiest way to

achieve this is to allow any receiver to sound a warning
which the sender can adapt to. Thus only if all the nodes

cooperate to cause congestion could the same situation
arise.

In addition to the concepts described above, the

controller should follow some generally desirable

design goals. The controller should be as minimal as
possible and not rely on any specific request/repair

algorithm, such as SRM [FJLMZ95] or the use of

specified DRs in RMTP [LP96]. This minimalist
attitude should extend to both the controller, thus very

little maintained state, as well as little interaction with

the receivers. It should apply to a broad range of

reliable multicast protocols, both connection-oriented
and connection-less. A minimalist attitude helps to

achieve this goal. Lastly, the controller should be

configurable to be more or less responsive to loss. This

helps to insure that even under circumstances with loss
due to transmission error, such as wireless or satellites,

and/or unresponsive competing traffic that the
controller can be tuned to perform better. This also

helps to match application desires and quality of service

with congestion control.

3. The Rate Controller

The basic approaches taken by the Loss Tolerant Rate
Controller (LTRC) to meet the requirements and goals
outlined above are:

• Track loss at the receivers and feed it back to the

sender as a measure of performance.

• Have the sender make rate change decisions based

primarily on reported loss and not an aggregate of
loss information from various receivers. Thus

promote the model of making decisions based on a
single routes behavior and not an aggregate of
routes. In other words, don't allow one congested

and two uncongested receivers to diminish the loss

reported by the one congested. Make decisions on
rate change based on a local observation.

• Allow the sender to track its last rate change

decisions and use that history to determine how it

reacts to newly reported loss. Stabilize the system
in the event of a change and allow it to stabilize

before making another change.

• Allow short term rate changes as well as long term

rate changes. If loss is independent and spurious a
drastic rate change should not be necessary. Only a

short term, "equilibrium maintaining" change

should be accomplished.

3.1 Controller Specification

LTRC is specified as a set of algorithms and a finite
state machine. The state machine is very similar to

[MJV96] in its operation. However, additions and
modifications have been introduced as well as the

machine operating at the sender instead of the
receiver(s). For the basic approach to be useful in a

variety of reliable multicast protocols, the state
specification is limited to only a few different events, an

WORKINGDRAFT

internally maintained timer and incoming loss reports.
These loss reports can be in the form of negative

acknowledgments, reception reports, or some other

direct message from a receiver to the sender. Along

with this loss report is a loss average value. This value
indicates the level of loss the receiver has observed over

a "short" period of time expressed as a percentage
between 0 and 100. The definition of short here is

relative to how often loss is reported. The idea is to

have the loss reports indicate a measure of the

immediate loss being experienced. A discussion of how
this can be performed with negative acknowledgments,

or NACKs, is presented later.

The goal of the state machine is to control when the
sender rate is increased and under what conditions a

decrease is warranted. Changes to the sender rate are

assumed to take effect immediately, or at the least, very

shortly after the change is indicated. This is extremely
important when the rate is decreased. Issues such as
bucket inertia if a token bucket rate limiter are in use
must be addressed.

The LTRC state specification is given in Figure 3 and a
description of the used parameters is given in Table 1.
The timer event, T, is used to indicate that a timer has

expired. The event, L, indicates a loss report with an

accompanying value is received. That received value is
then compared to pre-determined thresholds, l-_n, l-_ax,

Lm_, or l-_mx, to determine if any actions or state

transitions are to be performed. Actions are indicated in
the figure by (i) and (d) on transitions. The (i) action

indicates a rate increase and the (d) action indicates a
rate decrease.

Figure 3: LTRC State Specification

The five states of LTRC are: the increase state (I), the
increase wait state (Iw), the measurement wait state

(Mw), the measurement state (M), and the decrease wait

state (D,,). Each machine starts in the I_ state, and sets

its rate to a start rate, Ro, and waits for the T timer to

expire or loss to be reported above one of the
thresholds.

Parameter
T

Tv
Limax

Lm_

Lwmax

Rincr

Rmin

Rrnax

R0

Description
Timer expiration
Value used for the timer

Maximum loss threshold (increase)

Minimum loss threshold (wait transition)

Maximum loss threshold (post-wait)
Maximum loss threshold

Rate increased by linear increase (bps)

Minimum allowed rate (bps)
Maximum allowed rate (bps)

Start rate of controller (bps)

Table 1: Description of Parameters

The timer, T, uses a value that is referred to as the loss

detection time, To. Calculation of this value is discussed

below. The To time is a measure of the time it takes for

a rate change to "flush" through the system. Because

LTRC is intended to work primarily with connection-

less protocols, this value is just an estimate. For
connection oriented protocols, such as RMP or RMTP,
a more bounded time value can be used that is based on

message stability information. Such protocols can

increase faster and stabilize themselves much quicker
due to the tight interaction between sender and
receivers.

The change of rate in LTRC is done following the same

philosophies outlined in [J88] for TCP. LTRC uses a
multiplicative increase in rate until the first decrease
occurs. Afterward a linear increase is used. In both

increase methods (linear and multiplicative), the new
rate, Rx+_, is a function of the current rate, Rx. The

linear increase rule is given below.

Rx+1 = R x + Ri.cr

The multiplicative increase rule is given below.

Rx+ 1 = I e Rx

The Ig factor is the increase gain. Currently, a value of 2
is used just as is used in TCP for slow start. The

decrease rule is given below.

Rx+I = DgR x

WORKING DRAFT

The D s factor is the decrease gain. Currently, a value of
0.5 is used just as is used in TCP. A rate change has an
additional set of restrictions involved. A set of

minimum and maximum rates are enforced as well. Any

rate change must adhere to those restrictions. The need
for these restrictions might be less than obvious. The
minimum rate allows LTRC to be used in applications

where a data generation rate places a lower limit on
how fast LTRC must transmit to ensure data is not

buffered indefinitely. In this case, it is very important to

also impose thresholds at the receiver so that if loss

becomes too high for too long, then the application

should leave the group. The maximum rate addresses
another issue involved in connection-less protocols. In

the event of partitions or congestion collapse on the

channel used for loss reports, the rate should not
continue to rise unchecked 2.

LTRC is purposely designed to work very closely to the

way TCPs congestion control works as explained in
[J88]. The main differences are:

• LTRC is clocked with respect to time and not
ACKs. This is evident from the use of the timer to

initiate rate increases.

• LTRC makes decisions on rate increase and

decrease based on loss information being fed back
to the sender as well as recent activities (indicated

by the current state).

While in the increase state, LTRC uses the L_, loss

threshold to signal that the increase caused too much
loss. The rate is decreased and LTRC waits in the drop

wait state for the system to stabilize before making
another decision. The increase wait state is entered

when we assume the system is somewhat stable. While
in this state, if loss occurs above our I__, threshold, we

go into another wait state before we measure the loss

again. If the loss was just temporarily above the
threshold, we return to the increase wait state. If loss is
above the l-_ax threshold, then we decrease the rate and
wait for it to stabilize. In the increase wait,

measurement wait, or measurement states, if loss is

reported that is above the l-_m_ threshold, then we

decrease the rate immediately.

LTRC also uses an immediate action to address loss that

is discussed below. This part of LTRC has an impact on

2 Loss of this "back channel" is very dangerous for LTRC.
Maximum rate ensures that the rate goes no higher than a
certain limit, but in addition, the protocol should use
something like reception reports or periodic session messages
containing loss information and current state to provide
positive feedback. Such a scheme would cut the rate if the
receivers suddenly all left the group.

rate, but can be considered to be separate from the

major longer-term rate decisions outlined above. Many
more issues are also involved in LTRC, including loss
calculation at the receivers, timer calculation, etc.

3.2 The To Timer Value

The To timer value is composed of a large number of
factors. In addition, the value will be dependent on the

location of any bottleneck link. This widely varying
value then becomes extremely difficult to measure or

estimate when it can vary by several orders of

magnitude. Compare a local network buffer with a link

half way across the world. They each have different

delays, propagation times, bandwidth, and distance
from the sender.

Lets analyze the components of this timer. For this loss

detection time, we want to know "how long it would be

before a loss would be reported". Notice this is not,
"loss occurs". The detection time needs to be based on

when that loss is reported. If SRM is being used on each
individual loss, then we can look at this time as

something of this form 3.

To -- Qa + RTT + SRM Roo

The SRMRQD is the delay from the request scheduling.
This has a relationship to the RTT from the sender to

the receiver and can be approximated if we place
bounds on the values that the receiver might be using

for Cs and Ce. An estimation of the highest RTI"

calculated for the group provides a nice cushion and
value to use for R'Iq" in this calculation. The Qd element

is the hardest to approximate. It represents the portion

of time that corresponds to the bottleneck link building

up its queue and causing the initial drop. An estimate of
this delay could be done by sampling jitter in the RTI"
calculations. This is somewhat difficult and requires

multiple RTT calculations to the same receiver, usually
the one with the highest RTr. This queue delay is going

to have a lot of very hard to calculate factors involved,

including bandwidth, queue limit, queuing discipline,

link delay, how much the bandwidth was overshot, etc.
For this reason, the timer value is almost impossible to

estimate with any real amount of certainty. Thus a static

3 Determining this may be less than obvious. The time
involves the delay in having the queue build up in the
bottleneck link, Qd, the sending of the data packet that is
dropped due to the queue, V2 of an R'l"r, the delay in the
request, SRMRQD,and the delay in the request coming back to
the sender, another aAof an RTT. The first ½ RTT could be
part of the queue buildup, but adding it in individually gives
us a more conservative estimate.

WORKINGDRAFT

value for TD is the safest bet in most cases. However,

this value should be configurable so that small, local

groups are not needlessly penalized.

3.3 Loss Average Calculation

To report loss to the sender, each receiver must

maintain a measure of loss. A possible mechanism to do

this is to report a loss average measure in the negative
acknowledgments (NACKs) that a receiver sends while

using SRM. This piggy-backing of loss information in

NACKs is a very useful tool. Here we describe how loss
information can be tracked and reported.

On receiving each packet the average loss is updated.

This loss sample, lb is calculated by dividing the

number of lost packets by the number of expected
packets. The average, avgt, is calculated by an

exponentially weighted moving average (EWMA) that

is close in design to the one used for queue length in
RED [FJ93].

avg_ _-- (1 - wt)avg I + wtli

In addition, avgt is updated when a repair is received for

a requested packet. This acts as a relaxation mechanism

so that received repairs decrease the loss average.

avg t <--- WraVg t

The weights, wl and wr, are used to weight the moving

average. You should notice a couple things from this
immediately. The first is that if we update on reception

of every packet, then a lot of those loss samples are

going to be 0. This will cause the average to decrease

very quickly under no loss. The second observation is
that the relaxation mechanism will bring the average

down rapidly if a lot of repairs start coming in quickly.

This is intentional. Receiving repairs indicates that

congestion is abating, so the loss reported should be
less.

The loss average is reported in each NACK at the time
the NACK is sent, not scheduled. In addition, the value

is expressed as an integer from 0 to 100. Upon NACK
retransmission, the loss value is updated. Thus

retransmits will contain a value pertaining to the loss
value at the time the NACK is sent. Thus the request

delay of SRM acts to help smooth out any spurious loss.
If, for instance, only a few lost packets are observed,

then by the time the NACK is sent, the loss value would

be very low (probably 0) if no more loss (or very little
loss) was experienced or may increase if more loss was

experienced. This mechanism also works to reduce

ambiguity as to the independence of the loss. Even

suppressed NACKs will cause the loss value to increase

because it is updated before the NACK is scheduled.
Thus the loss value is not dependent on the sending of a

NACK, but on the loss experienced. In circumstances
where loss is independent, but of low value, the loss

value will be very small, but many NACKs will be sent.

In circumstances where loss is shared, but of a higher
level, the loss value will be higher no matter who

actually sends the NACKs because every member of a

congested subtree will experience the same loss. This

does not eliminate ambiguities resulting from feedback

suppression of NACKs, but it does help to allow LTRC
to make more accurate decisions.

The same kind of loss information can be returned in

positive acknowledgments (ACKs), such as is used by
RMTP [LP96]. In this case, ACK bitmaps act to give

potentially a better loss value and loss picture over

varying time frames. This would not prevent a loss
measure from being calculated and returned, but would
allow a time frame to be attached to that loss measure.

3.4 Immediate Reaction to Loss

To be responsive, LTRC must address every loss that is

reported and not just when the loss value is beyond a
threshold. Essentially, LTRC must take some form of
immediate action _. This action must be performed

regardless of how rate will be changed based on loss
information. Imagine that a sender is sending at a

constant rate. Spurious congestion causes independent

loss to be reported. The sender only wants to adjust his
rate a small amount and not a large amount to account

for the loss and the subsequent repair that it or another

member may send. The larger rate adjustments should

only be performed under more persistent loss (as
defined by the loss thresholds). To maintain

equilibrium, the sender would want to "consume" an

amount of bandwidth equivalent to how much
additional bandwidth the repair will take up (if the

sender does not send the repair itself or repairs are not

rate controlled). Suppose a repair is sent for each data

packet, 100% independent loss from a very large group.
We would like to have the original sender slow its rate

of new data to 50% of its original rate if no loss were
seen 5. Thus the overall rate of the whole group

(including any locally sent or globally sent repairs)
stays constant. If individual (or shared individual) loss

4 The term immediate action was chosen because it mimics

the action taken when addressing misfires or jams of early
firearms such as muzzleloaders.

5 If every data packet is sent twice (once for the original and
once for the repair), we get a true new data rate of 50% of the
overall rate.

WORKING DRAFT

reaches certain levels, LTRC should slow its rate. This

is what the state machine attempts to do.

LTRC must then "consume" a portion of its bandwidth
when a NACK is received or a retransmission of

previous data is eminent. Implementation of this is quite
trivial with a token bucket rate limiter. In this case, the

number of tokens in the bucket is decreased by the
amount of the repair. For a send time interval

mechanism, the send time would simply be extended or

the next interval would be ignored. This overall

technique is called, bandwidth consumption. The
amount of bandwidth consumed should be a multiple of

the repair size.

For bandwidth consumption to work, the sender must

know when a data retransmission is going to occur,
even if the sender is not the one to send the

retransmission. This could be done using unicasts if
need be. In the LTRC simulations with SRM, this

consumption occurs on receiving a NACK for a packet

which does not have a corresponding repair scheduled.
Thus duplicate requests are not accounted for if they are

received within the pending repair or ignore periods. If

the sender later sends the repair, then the repair takes up
additional bandwidth. In this case where the sender

always sends a repair in addition to consuming
bandwidth, the true new data rate drops to 33% of the

original rate.

3.5 Maximum Rate

Because LTRC might have some delay in receiving loss
reports from receivers as well as being connection-less,

it is important that the available rate not be overshot too

drastically. In addition, LTRC should attempt to insure
fairness with competing flows by using the loss reports
to determine how fair it should be. For both these

reasons, LTRC should dynamically calculate the
maximum rate it should use. In effect, this also acts to

force LTRC to be responsive.

Dynamically calculating the maximum rate based on
TCP responsiveness can be done by using the TCP

responsiveness formula from [FF97]. This is convenient

because it only has loss rate, RTT, and segment size as

its parameters.

In this equation, T is specified in bytes-per-second
(Bps), B is the segment size in bytes, R'Iq" is the total

round-trip time (including queuing delay) in seconds,

and p is the loss rate. The initial problem here is what to

use for RTT and what to use for p. An as of now
untested approach is to have the receivers send back

two loss rates, one for short term and another for longer

term. The long term loss rate would be used as p and the
RTr to the receiver would be used as the RTT. Thus

the controller would get a snapshot of how responsive it

is on the route to the receiver. This is yet to be

simulated or evaluated, but it does hold some promise.

3.6 Linear Rate Increment

To be as close to TCPs responsiveness as possible,
LTRC should determine the increment it should use for

linear increase, Rincr. The TCP rule is "at most one

packet per round-trip time" [J88]. A conservative

approach here would be to calculate an upper bound on

Riner as something similar to this.

2T_B

Rincr <- RITm.x

B is the same used in the maximum rate calculation.

The RTr represents a conservative round-trip time

estimate, and the rate increase is performed every other
To time increment. This increment should be set to a

maximum value equal to the present rate or a
percentage of the increment calculated above. This way,
the linear increase will never be more than what the

multiplicative increase would produce.

3. 7 Optimizing for Large Groups

Large receiver groups with high levels of independent

loss can cause LTRC to scale poorly. The presence of

duplicate repairs can cause more congestion and
eventually cause LTRC to reduce its rate too far. To

combat this, a possible solution is to use a mechanism

to combat independent loss more fiercely. Forward
Error Correction (FEC) is a very good mechanism to

avoid the impact of independent loss. The simulations
do not use this. However, future simulations will

explore the issue.

Protocol modifications must be done to incorporate
FEC. Mostly, this means modifying SRMs operation.

The basic approach works like this. A set of data

packets, dl ... dk, is encoded into a set of encoded

packets, el ... ek, and a set of "parity" packets, Pl -.- P.-k,
n-k is the amount of redundancy in the set. The sender

sends the encoded packets, e_ ... ek, and then starts

sending the next batch of encoded packets for the next

set of data packets. The receivers can decode the
original set of data packets if they receive the whole

encoded packet set. If a receiver misses any of these

WORKINGDRAFT

packets, it then sends a NACK identifying the data set it

needs and the number of encoded packets it did not
receive. Receivers do suppression based on number of

encoded packets requested. I.e., if one receiver loses 2

packets and another 3, then 2 would suppress sending a

NACK if it saw 3 send one. The sender, upon receiving
NACKs, sends the requested number of packets from

the set of parity packets. If the parity set is exhausted,

then it starts with the encoded set again. After sending a

parity, the sender then ignores the number of requests or
lower. If a new request comes in for more, it then sends

the difference, i.e. if it has sent 3 and it gets a request

for 5, it then sends 2 additional. This is an optimization
of the integrated FEC approaches described in

[NBT97]. As a last resort, the receiver can explicitly

request certain packets in the encoded set using the

normal SRM operation.

This integrated FEC technique is very effective in place

of local recovery because both address the same

problem of efficiency. The redundancy level should be
set based on short term loss. I.e. 25% indicates a k of 10

would give a n-k of about 4. One advantage here is that

the redundancy level is only going to effect the amount

of encoding space consumed at the sender. More

redundancy allows the parity set to be larger and thus
helping to preventing the retransmission of the encoded

set. From the receivers perspective, it only needs to
know the size of the encoded set, k, and the location of

each parity packet, i.e. a sequence number for the parity

packet. The actual size of the parity set is not needed

and could adaptively change. This approach ensures

that the efficiency of request/response is preserved,
while gaining the ability to handle independent loss

efficiently. With independent loss being handled more
efficiently, the rate controller can adapt to loss more

efficiently.

4. Simulations
To investigate the performance of LTRC under various

conditions, it was implemented in C++ along with a

C++ implementation of SRM and integrated into the
Network Simulator, ns [NS97]. Throughout the design

process, the simulator was used to try out hypothesis

and refine the controller. The controller is not perfect, it

is not even done, it is merely in the process of maturing.

4.1 Simulation Topologies

The topologies used for the simulations are based on the

type of arrangement shown in Figure 4. To perform

simulations with fairly large group sizes, a simplified
topology was needed.

Receivers

(% RI
LTRC Lz
Sender

L_ Rz

s L2

RN

Figure 4: Base Topology for Simulations

The parameters used for most of the simulations are

given in Table 2. Differences are mentioned in the
results.

Parameter Value Parameter Value

Lim_ 2 wt 0.25

Lmin 2 w, 0.25

Lm_ 5 R_n 32 Kbps

Lwm_ 10 Rmax 1.5 Mbps

Rincr 16 Kbps Ro 128 Kbps
TD 2 sec.

Table 2: Base Simulation Parameters

The links are given varying parameters such as

bandwidth, delay, queue limit, and queuing discipline
based on the goals of the individual simulation. These

parameters are mentioned with the results of each
simulation.

4.2 Performance Measures

For the simulations, we define a few measures of

importance. For transport protocols that must provide

reliable delivery, an overwhelmingly important measure

is perceived throughput at the receiver. Congestion
control will undoubtedly effect this measure. In

addition, throughput can be dually influenced by the
rate increase and decrease measures mentioned above.

Thus to get better throughput, the increase and decrease

parameters can be played with at the expense of more

loss. For this reason, the rate change parameters are
static for all simulations. In addition, loss is used as a

measure instead of throughput. With one exception and

that being the measures of fairness. The goal of

congestion control is to measure throughput against loss
and to be responsive to other traffic.

A primary concern with LTRC is its scaling properties.

To explore this, a set of simulations were set up and ran.
These were:

• loss rate versus varying number of receivers with a
static number of links congested

WORKING DRAFT

• loss rate versus varying number of congested links
with a static number of receivers

• loss rate versus varying round-trip times with a
static number of receivers and congested links

In these simulations, the loss rate is measured over three

different time scales. The first, 1 second, represents
spurious, short term loss. The second, 10 seconds,

represents mid term loss and the last, I00 seconds,

represents long term loss. Each simulation was run for
100 seconds or the equivalent of a normal kind of

transfer. Additionally, each simulation used a link

bandwidth of 1.5 Mbps and Drop-Tail queuing. The
delay of all links was the same except in the last

simulation where it was allowed to vary.

Links were congested by placing a Constant Bit Rate
(CBR) source at the LTRC source end of the link and a
sink at the other end. The CBR was set to consume half

of the link bandwidth, or about 750 Kbps, with a
uniform amount of random noise added to the timer
interval. I.e. the interval between sends is allowed to

vary by 0.5 times its true value. Thus each CBR will

transmit a true instantaneous rate uniformly distributed

over [497 Kbps, 1.5Mbps] but with an average

transmission rate of 750 Kbps. Instantaneously, we
should see that each link has some random amount of

noise as 750 Kbps is approached. Thus, we should see

some amount of independent loss as 750 Kbps is

approached. This setup showed to be the most difficult
for LTRC to deal with. For situations where a single

link is congested, the loss rate is very low. This kind of

situation is evident from the percent congested
simulation results. When L0 is congested as well as the

other links, LTRC should experience more loss because

the situation is analogous to having multiple congested
gateways in addition to 100% shared loss.

The sender being controlled by LTRC uses a token
bucket rate limiter that has a refresh rate of 50ms. The

sender transmits at 1.5 Mbps (or about every 5.33ms) if
not controlled. This interval also has the same amount

of random noise added to it as mentioned above. This

adds to the randomness of the rate that is controlled by

the rate limiter proscribed by LTRC. Additionally, only
the sender is allowed to send repairs. This helps to be

more efficient as in this simulation of SRM, all repairs

are multicast to the whole group. Simulations with
active local recovery showed no substantial difference.

The SRM simulation component uses adaptive

constants for its request processing.

Simulations are also presented that demonstrate the
fairness that LTRC can achieve among several instances

of itself. For purposes of these simulations, we will

define a fairness index, f, as:

N-I

(_ T(x)) 2

fi -- x=0
N-I

N_T(x) 2
x=0

T(x) in the equation is a measure of the resource that is
measured. In the case of the fairness simulations, we are

measuring receiver perceived throughput which

accounts for repairs received as well. Each receiver is
treated as a single entity, so the value N will be equal to

the number of groups times the number of members per

group.

The fairness simulations contain no CBRs, and each

link is 1.5 Mbps and 50ms, except for L0 which is 2.5

Mbps. All of the LTRC senders are in the S node and

each R node contains a single receiver for each group.
Therefore, the groups are 100% overlapped. For the

fairness simulations, Lwm_ was lowered to 2. This was

done to insure that "stable" senders would give up
bandwidth easier. The loss rate simulations did not use

L_max because they were never competing for traffic

while they were stable. Each sender in the fairness
simulation was started on the uniform distribution [1

second, 3 seconds].

4.3 Simulation Results

For each of the scaling simulation, the maximum loss
rate observed for each run was recorded. Therefore, the

value presented is the maximum loss rate observed over

a number of simulation runs for that setup.

Loss rate versus number of receivers is presented in

Figure 5. The delay used for all links was 50ms. All

links were congested and the 1, 10, and 100 second loss

time scales are shown. It should be fairly obvious that

the loss rate does not substantially change after about 20
receivers. The throughput for the runs stayed right

around 600 Kbps with hardly any variation. All of the

runs showed that the 1 second loss occurred during the
multiplicative increase. By contrast the linear increases

showed very low short term loss.

WORKING DRAFT

100.

10

0.1

i v
f_

)g

20 40 6O

Number of Receivers

X ---X---q
1 see

X_
10 sec

t AL

I 100'sec

i

80 100

All links congested, Drop-Tail queuing

Figure 5: Loss Rate vs. Number of Receivers

When the L0 link is not congested, we get a slightly

different story as depicted in Figure 6. The graph is
slightly more varying due to the fewer number of

samples as well as the enhanced randomness of the
CBRs, but the trend is never the less evident. The loss

rate is substantially lower for medium and long term
loss. This also represents a more accurate setup for most

situations in which LTRC will have to operate. This is

because rarely should LTRC see 100% shared loss and

multiple congested gateways on the same route. The

throughput observed stayed right around 610 Kbps with
hardly any variation.

100

10

0.1

10 sec

0 20 40 6O 80 100
Number of Receivers

Lo not congested, Drop-Tail queuing

Figure 6: Loss Rate vs. Number of Receivers (Set 2)

Loss rate versus percentage of congested links is
presented in Figure 7. The delay used for all links was
5Ores and the number of receivers was 100. All links,

except Lo, were congested and the 1, 10, and 100

second loss time scales are shown. It should be fairly

obvious that the loss rate does not substantially change
after about 10%. The throughput for the runs stayed

right around 610 Kbps with hardly any variation. All of
the runs showed that the 1 second loss occurred during

the multiplicative increase just as in the previous
simulation.

100

10

iJ

0.1

1 sec

10 sec

"1_+ 100 sec

......... i i ,

0 20 40 60 80 100

Percent of receivers congested

100 receivers, Lo not congested, Drop-Tail

Figure 7: Loss Rate vs. Congested Percentage

Loss rate versus round-trip time is presented in Figure
8. The delay used for all links was RTr/4, the queue

limit held constant at the default setting of 50, and the

number of receivers was 100. All links, except Lo, were
congested and the 1, 10, and 100 second loss time

scales are shown. The throughput for the runs stayed

right around 610 Kbps with only about 50 Kbps of

variation. The outlying runs, RTTs of 0.001 and 1,

showed a reduced throughput of roughly 390 Kbps.

Mainly, this seems to be due to mismatches with TD, a
tendency to overshoot the target rate drastically and

then cut the rate too much, and a mismatch with queue

limits which were not changed. It should be noted that
LTRC reduced its rate under these circumstances

instead of allowing the loss rate to climb. All of the runs

showed that the 1 second loss occurred during the

multiplicative increase just as in the previous
simulations.

0.001 0.005 0.01 0.02 0.05 0.1 0.2 0.5

Round-Trip Time(see)

100 receivers, Lo not congested, Drop-Tail queuing

Figure 8: Loss Rate vs. Round-Trip Time

The previous simulations should show that LTRC scales
nicely with regard to number of receivers, percentage of

links congested, and round-trip time (or group locality).

However, a congestion control scheme must be

responsive and attempt to achieve some measure of
fairness.

I0

WORKING DRAFT

Using the fairness index defined above, similar scaling

issues where explored. With respect to the number of
receivers, the fairness index stayed very constant as

long as the number of groups was kept constant. The
only substantial variation was noticed when the number

of groups was allowed to vary and the number of

receivers was kept constant. A graph of this is shown in

Figure 9. Each point shows the range of observed

values as well as the average of those values
represented by a dash. 10 receivers were used so that

the larger number of group simulation runs would finish
in a reasonable amount of time. As you should see, the

variation was fairly broad. It should be noted that the
largest variation in the results was the result of a set of

groups getting ½ the bandwidth of another. At no time

did a group or receiver only get the minimum rate.

._ 0.9

0.8

_0.7

0.6

2 3 4 5 6 7 8 9 10 12 14 16

Number of Senders(Groups)

10 receivers, _ = 2, Lo = 2.5 Mbps, Drop-Tail

Figure 9: Fairness vs. Number of Groups

When RED queuing is used in place of Drop-Tail, we
see a reduction in the amount of variation. This is

shown in Figure 10.

I

0.95

0.9
M

._ 0.85
-_ 0.8

0.75

0.7
0.65

0.6

2 3 4 5 6 7 8 9 10 12 14 16

Number of Senders(Groups)

10 receivers, _ = 2, La = 2.5 Mops, RED

Figure 10: Fairness vs. Number of Groups (RED)

The simulation can be made to be fairer by using a
maximum rate calculation as well as using a longer run

length. A length of 100 seconds with TD of 2 seconds
and Ri_r of 16 Kbps does not allow a starved sender

much time to recover. Preliminary results indicate that

longer run lengths as well as maximum rate calculations
do allow for more constant fairness measures.

5. Conclusions and Future Work
The need and utility of a sender-based rate controller

for reliable multicast protocols is quite evident. The

Loss Tolerant Rate Controller (LTRC) presented goes a

long way to achieving many of the properties such a

rate controller should have. In many ways, LTRC poses
more questions than it answers.

The basic approaches of LTRC have use in other areas.
It is interesting to investigate if loss tolerant rate control

could be applied to lossy links, such as wireless and

satellites. In that environment FEC would be a necessity

and tuning the loss thresholds would be necessary. That
begs the question of whether adaptive loss thresholds

would be of any use. It would also be interesting to

investigate the use of loss report feedback in other

contexts, such as request-response protocols and
transaction protocols.

LTRC, as well as other congestion control schemes,
must assume that traffic is responsive and must also be

responsive to other traffic. This basic assumption is the
only way that wide spread congestion control will work

without imposed fairness in the network infrastructure,

such as RED with Fair Queuing and resource

reservation. A configurably responsive scheme, such as

LTRC, might violate some of those assumptions.

However, to suite some application demands, it might
be necessary. Application-Transport characteristic

mismatches hurt not only the network, but end-users. A

good example is the use of TCP for HTTP. Clearly, the

two are not designed to work well together and now we

are only beginning to understand exactly how badly
they interoperate. A possible way to alleviate these

kinds of problems is to allow configuration of the
transport congestion control under certain restrictions.

This is a very logical next step because it incorporates
many of the basic issues of ALF [CT90]. ALF should

also encompass the congestion control scheme of the

transport as well as the protocol itself.

Some of the questions LTRC raises that are to be

explored are:

• Would a straight linear increase with a larger

increment be more effective than a multiplicative
increase?

• What is the effects of consecutive loss on loss

averages at the receivers?

• What is the best policies for changing rates?
Should increases and decreases take effect

immediately or should ramp-ups and ramp-downs
be used?

• What kinds of measures would produce better To
values?

11

WORKINGDRAFT

Beyond the logical next steps of adding FEC to the
simulations and maximum rate determinations,

numerous other issues are being explored. As has been

mentioned, integrating a partial receiver-driven

component could add several properties and allow
LTRC to be quite powerful and adaptable for many uses

beyond bulk-transfer. An investigation of the state

machine stability as well as a full parameter study using
the simulations is also well underway.

6. Acknowledgment
This work is funded by GlobalCast Communications,

Inc. and by NASA Cooperative Agreement NCC2-979

at the NASA/Ames IV&V Facility in Fairmont, WV. In
addition, extreme thanks go to the authors and
maintainers of the network simulator, ns, without whose

work on making ns available this work would not be
possible.

u

[CT90]

IFF971

[FJ93]

IFJLMZgSl

088]

ILp96]

[M97]

[M7¢96]

References
Clark, Tennenhouse, "Architectural
Considerations for a New Generation of

Protocols", Proceedings of SIGCOMM

1990, pp. 201-208, September 1990.

S. Floyd, K. Fall, "Router Mechanisms to
Support End-to-End Congestion
Control". Technical report, February
1997, LBL.

S. Floyd, V. Jacobson, "Random Early
Detection gateways for Congestion
Avoidance", IEEE/ACM Transactions on

Networking, V.1 N.4, August 1993, p.
397-413.

Floyd, Jacobson, Liu, McCanne, Zhang,
"A Reliable Multicast Framework for

Light-Weight Sessions and Application
Level Framing", Proceedings of
SIGCOMM 1995, pp. 342-356, August
1995.

V. Jacobson, "Congestion Avoidance and
Control", Proceedings of SIGCOMM

1988, pp. 314-328.

K.C. Lin, S. Paul, "RMTP: A Reliable

Multicast Transport Protocol", IEEE
INFOCOMM 1996, March 1996, pp.
1414-1424.

M. Handley, "An Examination of Mbone
Performance", UCL and ISI, January
1997.

McCanne, Jacobson, Vettedi, "Receiver-
based Layered Multicast", Proceedings of
SIGCOMM 1996, pp. 1-14.

[NBT97]

[NS97]

[YKT96]

j. Nonnenmacher, E. Biersack, D.
Towsley, "Parity-Based Loss Recovery for
Reliable Mulficast Transmission",

Technical Report 97-17, Dept. Of
Computer Science, U. Massachusetts,
March 1997.

UCB/LBNL Network Simulator (ns).
Version 1. 1997.

M. Yajnik, J. Kutose, D. Towsley, "Packet
Loss Correlation in the Mbone Multicast

Network", Proceedings of IEEE Global
Intemet Conference, London, Nov. 1996.

12

